Tantangan Komersialisasi Teknologi

Dr. Dudi Iskandar
Direktur Pusat Teknologi Produksi Pertanian
BPPT
Dr. Dudi Iskandar, M.For.Sc
Director, Center for Agricultural Production Technology
Director, Center for Technopreneurship and Industrial Cluster
Agency for The Assessment and Application of Technology (BPPT), Republic of Indonesia

Area of Interests
Innovation system, Technopreneurship, science and techno parks, industrial cluster

Profile
- Graduated from University of Canterbury New Zealand in 2011 with the major of Forestry Science. His PhD thesis related to the adoption process of Innovation in forestry sector in Indonesia.
- Researcher in Forestry and Plantation at BPPT (1993-now)
- 2013, Head of Division for Innovation Capability, BPPT
- 2014 as a Head of the program for techno park development in Cimahi, West Java, Indonesia. He has been working with startups in animation and food products.
- 2015, Director of The Center for Technopreneurship and Industrial Cluster, BPPT. His main job is to develop technopreneurs in Indonesia through universities and local governments.
- One of the judges for National Young Innovation Competition held by Ministry for Youth and Sports in 2014 and 2015.
- One of the judges for Indonesia Sociopreneur Challenge 2015 & 2016 held by Surya University.
OUTLINE PEMAPARAN

1. INOVASI TEKNOLOGI
2. TINGKAT KESIAPAN TEKNOLOGI (TKT)
3. KOMERSIALISASI TEKNOLOGI
4. BEKERJASAMA DENGAN PEMERINTAH
Inovasi atau Invensi Mahasiswa?

#INOVASI MAHASISWA

NEW, TV ONE | JUMAT, 14 OKTOBER 2016 00:18
Kacamata Baca Canggih Buatan Anak Negeri

TEKNOLOGI | KAMIS, 11 AGUSTUS 2016 08:34
Polisi Tidur Bisa Hasilkan Listrik Berkat Karya Anak Malang
Sekali hentakan kendaraan, polisi tidur bisa menghasilkan 10-15 volt.

TEKNOLOGI | RABU, 15 JUNI 2016 18:17
Mahasiswa UGM Ciptakan Early Warning System Kebakaran Hutan
Sensor akan mengalirkan sinyal ke pusat pemantauan untuk pemadaman.

TEKNOLOGI | JUMAT, 9 MEI 2016 19:40
Kapal Cepat Mahasiswa UI Bakal Unjuk Gigi di Swiss
Kapal tersebut bisa angkut beban yang lebih berat.

SURABAYA | 7 bulan lalu
Mahasiswa Surabaya Ciptakan Pencegah Kebakaran Berbasis Android
Alat itu berupa pengendali listrik berbasis android yang dikeluarkan bisa mencegah kebakaran akibat arus pendek.

SURABAYA | 11 bulan lalu
Kunthing Sakti, Mobil Listrik Lincah dan Kuat dari Surabaya
Mobil listrik Kunthing Sakti menggunakan 100 persen bahan baku sendiri.

SURABAYA | 1 tahun lalu
Coba Pasta Gigi Sehat dari Cangkang Telur Ini
Mahasiswa Malang menemukan pasta gigi cangkang telur mendapat penghargaan internasional.

BANDUNG | 1 tahun lalu
Printer 3D Rakitan Mahasiswa Cirebon Disambut Gembira Seniman
Beraik dari hobi mengukir desain, mahasiswa Cirebon kembangkan
Inovasi atau Invensi Mahasiswa?
Inovasi dapat diartikan sebagai suatu produk atau praktik baru yang diaplikasikan dalam suatu konteks komersial.

Inovasi juga dapat berupa sistem, “kegiatan” atau proses penciptaan kebaharuan sehingga bernilai komersial.

Inovasi mencakup berbagai ciptaan baru yang memiliki nilai ekonomi tinggi, yang umumnya dilakukan oleh perusahaan atau individu.

Inovasi dapat berupa aplikasi komersial yang pertama kali dari suatu produk atau proses yang baru, merupakan sebuah proses kreatif dan interaktif yang melibatkan kelembagaan.
Invensi atau Inovasi Mahasiswa?
Inovasi dapat diartikan sebagai suatu produk atau praktik baru yang diaplikasikan dalam suatu konteks komersial.

Inovasi juga dapat berupa sistem, “kegiatan” atau proses penciptaan kebaharuan sehingga bernilai komersial.

Inovasi mencakup berbagai ciptaan baru yang memiliki nilai ekonomi tinggi, yang umumnya dilakukan oleh perusahaan atau individu.

Inovasi dapat berupa aplikasi komersial yang pertama kali dari suatu produk atau proses yang baru, merupakan sebuah proses kreatif dan interaktif yang melibatkan kelembagaan.
Technopreneur ini adalah Entrepreneur yang berbasis pada teknologi dalam menjalankan usahanya.
• Kecakapan dalam bidang teknologi yang diintegrasikan dengan kecakapan dalam bidang kewirausahaan dikenal sebagai kecakapan technopreneurship (Lumsdaine, 2010).

• Technopreneurship adalah pengembangan kecakapan aplikasi teknologi dan kecakapan kewirausahaan yang lebih menekankan pada pentingnya penemuan produk baru (invention) dan perbaikan (innovation) untuk dipasarkan sebagai penghasil uang (Hwa, 2009)

• Sedangkan technopreneur, adalah sebutan yang diberikan kepada orang yang mampu melihat peluang dalam bidang usaha yang berbasis pada ilmu pengetahuan dan teknologi (See, 2010).
OUTLINE PEMAPARAN

TINGKAT KESIAPAN TEKNOLOGI (TKT)
Tingkat Kesiapanan Teknologi: Batasan

Tingkat Kesiapanan Teknologi (TKT - TRLs) adalah ukuran posisi kegiatan penguasaan teknologi yang sistematis di mana memberikan ukuran obyektif untuk menyampaikan kematangan suatu upaya pengembangan teknologi yang dipantaunya secara bertahap langkah demi langkah.

Technology Readiness Levels (TRLs) are a systematic metric that provides an objective measure to convey the maturity of a particular technology.

They were originally developed by NASA, but with a little modification (getting grid of all the "in space" qualifiers, for example), they are used to express the readiness level of just about any technology project.

The Department of Defense has adopted this metric to evaluate the readiness levels of new technologies and guide their development toward the state where they can be considered "Operationally Ready".

Implementasi TRL (TKT) secara Nasional didasarkan atas:
Peraturan Menteri Ristekdikti Nomor 42 Tahun 2016.)
Tingkat Kesiaapterapan Teknologi

Hard Engineering

9
Sistem benar-benar teruji/terbukti melalui keberhasilan pengoperasian

Riset Pengembangan

8
Sistem telah lengkap dan handal melalui pengujian dan demonstrasi dalam lingkungan sebenarnya

7
Demonstrasi prototipe sistem dalam lingkungan sebenarnya

Riset Terapan

6
Demonstrasi model atau prototipe sistem/subsistem dalam suatu lingkungan yang relevan

5
Validasi komponen/subsistem dalam suatu lingkungan yang relevan

4
Validasi komponen/subsistem dalam lingkungan laboratorium

Riset Dasar

3
Pembuktian konsep fungsi dan/atau karakteristik penting secara analitis dan eksperimental

2
Formulasi konsep dan/atau aplikasi formulasi.

1
Prinsip dasar dari teknologi diteliti dan dilaporkan.
Tujuan Permen 42/2016

- Pengukuran dan Penetapan Tingkat Kesiapterapan Teknologi bertujuan untuk:
 - mengetahui status Kesiapterapan Teknologi,
 - membantu pemetaan kesiapterapan teknologi,
 - mengevaluasi pelaksanaan program atau kegiatan riset dan pengembangan;
 - mengurangi risiko kegagalan dalam pemanfaatan teknologi; dan
 - meningkatkan pemanfaatan hasil riset dan pengembangan.

Hasil Pengukuran TKT-digunakan oleh

- pengambil kebijakan dalam merumuskan, melaksanakan, dan mengevaluasi program riset dan pengembangan;
- pelaku kegiatan dalam menentukan tingkat kesiapterapan teknologi untuk dimanfaatkan dan diadopsi; dan
- pengguna dalam memanfaatkan hasil riset dan pengembangan.
Prinsip dasar dari teknologi diteliti dan dilaporkan

1. Asumsi dan hukum dasar (sebagai contoh fisika/kimia) yang akan digunakan pada teknologi (baru) telah ditentukan,
2. Studi literatur (teori/empiris atas riset terdahulu) tentang prinsip dasar teknologi yang akan dikembangkan,
3. Formulasi hipotesis riset (bila ada).
TINGKAT KESIAPAN TEKNOLOGI 9

Sistem benar-benar teruji/terbukti melalui keberhasilan pengoperasian

1. Konsep operasional telah benar-benar dapat diterapkan,
2. Perkiraan investasi teknologi sudah dibuat,
3. Tidak ada perubahan desain yg signifikan,
4. Teknologi telah teruji pada kondisi sebenarnya,
5. Produktivitas pada tingkat stabil,
6. Semua dokumentasi telah lengkap,
7. Estimasi harga produksi dibandingkan kompetitor, dan
8. Teknologi kompetitor diketahui.
Technology Readiness Level (TRL) Process

NASA’s quest to make jet engines quieter led to the development of chevrons, which moved relatively quickly through the TRL process to be deployed into the commercial marketplace.

TRL 1-2 (1980s)
- Fundamental investigations of air-mixing devices (tubes, chevrons, etc.)
- No specific application, basic research in fluid physics

TRL 3 (Early 1990s)
- Applications to small nozzles and airfoils
- Lab tests, concept on paper

TRL 4-5 (1995-1997)
- Model tests for acoustics and aerodynamics
- Sub-scale model tests

TRL 6 (1998-2000)
- Full scale tests for acoustics and aerodynamics
- Static engine tests

TRL 7 (2001-2005)
- Validation of concept in flight
- Flight tests, final design

TRL 8-9 (2005-now)
- Certification by the Federal Aviation Administration
- Deployed into market
Klik registrasi

http://tkt.ristekdikti.go.id/sa
Komjen

- **Inventor:** Agus Candra, ST (23 Tahun)
- **Produk:** Inovasi kompor berbahan bakar minyak jelantah & oli bekas (Komjen = Kompor Minyak Jelantah)
- **Latar Belakang:**
 - Menjadikan minyak jelantah sebagai energi alternatif
 - Minyak jelantah berstruktur kimia hidrokarbon dengan rantai karbon yang panjang ➔ sangat potensial sebagai bahan bakar alternatif
 - Bahan bakar dapat diperbaharui dan terjangkau masyarakat
 - Solusi alternatif BBM yang semakin mahal & langka

![Komjen Image]
• Inventor: Agus Candra, ST (23 Tahun)
• **Produk**: Inovasi kompor berbahan bakar minyak jelantah & oli bekas
 (*Komjen* = *Kompor Minyak Jelantah*)
• **Latar Belakang:**
 – Menjadikan minyak jelantah sebagai energi alternatif
 – Minyak jelantah berstruktur kimia hidrokarbon dengan rantai karbon yang panjang ➔ sangat potensial sebagai bahan bakar alternatif
 – Bahan bakar dapat diperbaharui dan terjangkau masyarakat
 – Solusi alternatif BBM yang semakin mahal & langka

Gambar 2. Produk KOMJEN setengah jadi Belum di cover dan Performa KOMJEN saat dihidupkan
Indonesia Bangkit Teknologi

• **Inventor:** Teguh Dwijaya, ST (25 tahun)
• **Produk:**
 – Mesin CNC Grafir dan Cutting pembuat huruf dan ukiran
 – Mesin CNC merupakan mesin potong, grafir, dan 3D printing pada kayu, akrilik, hardboard, textile dll dengan akurasi tinggi menggunakan desain komputer
• **Latar Belakang:**
 – Mesi CNC di pasaran terbatas dan harganya mahal → masih terbatas pengusaha besar
 – Produk di pasaran saat ini masih impor
OUTLINE PEMAPARAN

KOMERSIALISASI TEKNOLOGI
Teknologi

Ini Alasan Hasil Inovasi RI Tak Laku di Dalam Negeri

Hasil riset yang tak sesuai pasar dinilai sebagai salah satu pemicu tren ini.

Oleh:

Riset Haruslah Bernilai Komersial

Kamis, 4 Juli 2013 | 10:52

JAKARTA | Sebuah hasil riset haruslah bernilai komersial atau ekonomis agar tidak okekada prototipe tanpa di produksi massal. Tak berhenti sampai di situ pemerintah pun harus menjamin perlindungan hukum dan pendanaan riset.

Data BIC menunjukkan dari 700 hasil riset tersebut secara rinci hampir separuhnya (41 persen) dalam proses tindak lanjut, terkomersilkan (18 persen), berhenti di tengah jalan (7 persen), gagal (2 persen) dan tidak ada informasi (32 persen).

40 Persen Paten Riset Tidak Komersial
SOUTH KOREA
Merubah kemiskinan menjadi Kemakmuran, melalui komersialisasi teknologi

- 1960 : 5000 peneliti & perekayasa bidang kemiliteran, Industri ringan / perakitan menuju industri berat (kimia)
- 1966 – 1988 :
 - (G + B) Membangun ± 24 lembaga riset (KIST, KAIST, dll) yg bertugas mengurai teknologi asing (reverse engineering) dan melisensikan ke berbagai industri dalam negeri
 - (A) Memberikan gaji besar pd peneliti & perekayasa yg sukses di luar negeri (strategi ‘anti braindrain’)
 - Industri elektronik bangkit, anggaran 62% utk lembaga riset pemerintah, 9.2% utk perguruan tinggi, 28.8% utk swasta
- s/d. 2008 :
 - Dana riset swasta menjadi 2/3, pemerintah 1/3
 - 323rb peneliti, 24 GRI, 390 projek riset

Referensi : Amir F. Manurung, Komersialisasi Teknologi, Laporan Dinas 2011)
USA, Silicon Valley (1971): Apple Computer, Hewlett-Packard, Intel, dan Yahoo ...

Inggris: Cambridge Science Park (1960), 64 perusahaan, 4000 pegawai

India, Bangalore (1990): Infosys, Wipro, HCL, branch Google, Yahoo, IBM, Microsoft

Singapore Science Park (1980): elektronik, semikonduktor

Taiwan Science Industrial Park (1976): asesoris komputer

Jepang (1960): Tsukuba Science City
Eksisting Kondisi

Daya Saing Indonesia 2014-2015 ke 34 (Singapura 2, Malaysia 20, Thailand 31), secara garis besar¹:
1) Kelembagaan, infrastruktur, tingkat pendidikan serta kesehatan masyarakat
2) Pendidikan tinggi dan pelatihan, dan *kesiapan teknologi* di tingkat nasional dan perusahaan
3) Kecanggihan proses produksi di dalam perusahaan yang secara bersamaan menentukan tingkat *inovasi* suatu negara

Jepang² (342.610), **Korea** (178.924), **China** (526.412), **Taiwan, Malaysia, Singapura**: sukses dalam mengaplikasikan komersialisasi teknologi

Jumlah Technoprener (2016)³ 0.43 %, Thailand 3%, malaysia 5%, Singapore 7.2%

Produk impor, SDA melimpah, AFTA, Bonus Demofrafi

¹ Referensi: World Economic Forum (WEF) Report 2016 (Notes: 126 indikator yang dikelompokkan dalam 12 pilar yaitu kelembagaan, infrastruktur, lingkungan makro ekonomi, pendidikan dasar dan kesehatan, pendidikan tinggi dan pelatihan, efisiensi pasar barang, efisiensi pasar tenaga kerja, pengembangan pasar keuangan, kesiapan teknologi, ukuran pasar, kecanggihan bisnis, dan inovasi)
³ Kemenristekdikti, Siaran Pers 11 November 2016
Definisi Komersialisasi Teknologi

- **Siegel et al, 1995**: "moving technology to a profitable position" (teknologi dikembangkan sehingga bisa diaplikasikan pada kegiatan produksi yang menguntungkan)

- **Parker dan Mainelli (2001)** proses yang menghasilkan keuntungan:
 a. Fase pertama terjadi saat teknologi yang dihasilkan menciptakan lisensi.
 b. Fase kedua terjadi saat teknologi diaplikasikan melalui product development di perusahaan

- **Randall Goldsmith (2003)**:
 a. fase investigasi
 b. fase pengembangan
 c. fase komersialisasi.

Referensi:
- Siegel, Hansen, Pellas, 1995 : Accelerating the Commercialization of technology Commercialization
- Parker and Mainelli. 2001 : Great Mistakes in Technology Commercialization
- Randal Goldsmith 2003
Proses Komersialisasi Teknologi

Fase 1
Investigasi

Fase 2
Pengembangan

Fase 3
Komersialisasi

Technology
INVENTION
(Thingking New Things)

Business
INNOVATION
(Doing New Things)

Valley of Death

bambang s pujantiyo
Proses Komersialisasi Teknologi

Fase 1
Investigasi

- Ide / Gagasan
- Penjabaran Ide
- Kelayakan (Kajian)
- Prototipe
- Patent
- Laporan (R&D based)

Fase 2
Pengembangan

- Biztek Validasi
 - Uji Produksi
 - Uji Pasar
 - Uji Jual
 - Bisnis Model Awal
 - Kemitraan, Legalitas, dll

Fase 3
Komersialisasi

- Menentukan Produk
- Bisnis Plan
- Produksi Masal
- Pemasaran
- Pengembangan
- Keuntungan Usaha (business based)

Seed (inkubasi) -> Intermediator Role ?? -> Start-Up (Akselerasi)

Growth, Mature

Idea
Intermediator Role (Fase 2)

Fase 1
Investigasi

Fase 2
Pengembangan

Fase 3
Komersialisasi

Technology Push

Creating New Technopreneur

Optimizing Technology Based Business

Demand Pull

Improving Existing Entrepreneur

Innovative Technopreneur

Industrial (Cluster) Development (Outcome)

Lembaga Penelitian

Intermediator

TTG

BIT

BE

Industri (Cluster) (Output)

Lembaga Penelitian (Intermediator)
OUTLINE PEMAPARAN

BEKERJASAMA DENGAN PEMERINTAH
Eksternal & Internal Faktor Pendukung

- Technology Change
 - Penggunaan internet, dll
 - Technology Disruption

- Political & Regulatory Change
 - subsidi thd invensi/inovasi
 - Pengurangan pajak

- Social & Demographic Change
 - Trend masyarakat
 - Usia lanjut > besar

Kendala Personal (peneliti & perekayasa):

- **Un-choachable**: percaya diri yang berlebihan, enggan untuk menerima masukan
- **Research trap**: lebih nyaman berkonsentrasi dibidang teknologi, tidak di sisi komersialnya
- **Marble mouth**: belum mampu mengartikulasikan nilai tambah maupun keunikan produk
- **Pain problem**: kurangnya sosialisasi dan informasi kepada user
- **Wrong-sized**: salah menganalisa pasar
- **No league to join**: kurang kerjasama dengan pihak lain terkait (supply chain)

Referensi: //tonnysintesis.wordpress.com/2014/11/14/komersialisasi-teknologi-1-hambatan-dan-tantangan/
Kendala Industri (IKM/UKM):
- cenderung untuk mempermasalahkan tentang kurangnya modal,
- target keuntungan dan nilai saham, tanpa mempertimbangkan R&D secara optimal,
- tidak memiliki dana untuk pemanfaatan teknologi, dan akan mempengaruhi keseimbangan keuangan secara keseluruhan,
- belum banyak mendapatkan informasi tentang hasil penelitian
- pada umumnya, yang banyak memanfaatkan teknologi secara optimal, adalah pengusaha besar

Kendala Kebijakan komersialisasi teknologi di Indonesia:

• minimnya pendanaan kegiatan litbang, terutama pendanaan di sektor hilir
• lemahnya peran unit pelaksana komersialisasi
• msh lemahnya kebijakan komersialisasi (technology disruptive, dll)
• komersialisasi yang terjadi belum mencerminkan proses yang memadai

Referensi: Adawiyah dkk (KRTD), Komersialisasi Teknologi dlm Upaya Peningkatan Daya Saing Industri Indonesia, www.academia.edu_2017
3 Prinsip Dasar Academician

1. **Value Proposition (Keinovasian) dlm bisnis model**: Manfaat ganda, Efisiensi penggunaan, Pelayanan bertambah, Kemudahan mendapatkan. Sebagai acuan utama dalam bisnis model (bisnis plan, BMC, elevator pitching)

2. **Valuasi Komersialisasi Teknologi**:
 - Aspek Pasar: segmen pasar yang besar, positioning industri yang atraktif, pertumbuhan pasar, tingkat persaingan rendah.
 - Aspek Teknologi: minim resiko, ketersediaan bahan baku (mudah didapat), Kapasitas produksi dpt disesuaikan permintaan pasar, perlindungan (HKI).
 - Aspek Finansial: prinsip modal kecil dan keuntungan besar

3. **Strategi Komersialisasi Teknologi (melalui bisnis komunikasi)**:
 - Menciptakan usaha baru (spin-off / perusahaan baru)
 - Lisensi: franchise.
 - Penjualan (Jual putus): paket-paket teknologi (menjual paket teknologi khusus)
 - Joint antara lain: kerjasama pengelolaan/joint operation, joint venture, dll.

bambang s pujantiyo
ABG Technopreneurship Program
(Internal Factor Komersialisasi Teknologi)

Technopreneurship Program

Demand Pull

• Market Analysis
• Prinsip Academician
• Business Technology Forum & Gathering
• Inkubasi & Akselarasi

Technology Push

Lembaga Intermediator

G

Strategi Kebijakan Teknologi
Insentif bisnis teknologi

Consumer Needs

A

B
1. Sumbangan STP terhadap perekonomian lokal meningkat.
2. Terbangunnya sistem pertanian terpadu di kabupaten / kota
3. Terbangunnya ekosistem perekonomian berbasis pertanian
4. Terbangunnya klaster industri berbasis inovasi

Sumber: Kementerian PPN/Bappenas, 2015; Dr. Ir. Sri Setiawati, MA, FGD “Pembentukan Sistem Technopreneurship dan Implementasinya Dalam Rangka Mendukung Fasilitasi Science Park” Jakarta, 10 November 2015
SCIENCE AND TECHNO PARK

Pembangunan Techno Park dan Science Park

VISI-MISI PRESIDEN RI

Nawa Cita ke-6:
Membangun sejumlah Science dan Techno Park di daerah-daerah, politeknik dan SMK-SMK dengan prasana dan sarana dengan teknologi terkini.

SASARAN:
Terbangunnya 100 *Techno Park* di daerah-daerah kabupaten/kota, dan *Science Park* di setiap provinsi.

ARAH KEBIJAKAN:

- **Pembangunan Techno Park** diarahkan berfungsi sebagai:
 - Pusat penerapan teknologi di bidang pertanian, peternakan, perikanan, dan pengolahan hasil (pasca panen) manufaktur, ekonomi kreatif & jasa lainnya yang telah dikaji oleh lembaga penelitian, swasta, perguruan tinggi untuk diterapkan dalam skala ekonomi;
 - tempat pelatihan, pemagangan, pusat diseminasi teknologi, dan pusat advokasi bisnis ke masyarakat luas;

- **Pembangunan Science Park** diarahkan berfungsi sebagai:
 - penyedia pengetahuan terkini oleh dosen universitas setempat, peneliti dari lembaga litbang pemerintah, dan pakar teknologi yang siap diterapkan untuk kegiatan ekonomi;
 - penyedia solusi-solusi teknologi yang tidak terselesaikan di *Techno Park*;
 - sebagai pusat pengembangan aplikasi teknologi lanjut bagi perekonomian lokal.
1. Sumbangan STP terhadap perekonomian lokal meningkat.
2. Terbangunnya sistem pertanian terpadu di kabupaten / kota
3. Terbangunnya ekosistem perekonomian berbasis pertanian
4. Terbangunnya klaster industri berbasis inovasi
1. Teknopolitan Pelalawan
2. Techno Park Lampung Tengah
3. Techno Park Cimahi
4. Techno Park Pekalongan
5. Techno Park Grobogan
6. Baron Techno Park Gunung Kidul
7. Techno Park Penajam Paser Utara
8. Techno Park Bantaeng
9. BIT - PUSPIPTEK
CIMAHI TECHNOPARK

- Building: 5,627 square meters.
- Total land area: 11,162 square meters.
- Green and eco-building, where the building is designed to have plenty of air circulation and natural lighting.
- Class
- Workshop
- Creative corner
- Parking
- Jogging track
- Playground
- Soccer
Program utama Cimahi Techno Park

1. Kolaborasi Quadruplehelix
 - Government
 - Research Institutes & Universities
 - Cimahi Techno Park
 - Communities, Small & Medium Enterprises
 - Industries, Banks

2. Fasilitas: convention hall working space dan perkantoran

TUJUAN
Sebagai tempat tumbuhnya start-up bidang animasi dan telematika di Jawa Barat
Program utama Cimahi Techno Park

3. Program Inkubasi

- **Perusahaan Pemula Berbasis Teknologi**
- **Inkubasi**
 - coaching dan mentoring
 - jejaring bisnis
 - penyusunan model bisnis
- **pemuda dengan potensi**
- **inovasi teknologi**

4. Program Akselerasi dan Pelatihan

- **Existing Company**
- **UKM Inovatif**

5. Program Layanan Konsultasi dan Pendampingan Bisnis dan Teknologi

- **Program Pemagangan**
Hasil Kegiatan 2017

3 orang
SDM pengelola CTP lulus training di Swedia dan USA

14 Startup & 10 animator
Graduate di tahun 2017

615 UKM
dilatih dan didampingi di CTP (2017).

98 orang
mendapat sertifikat animator

5 perusahaan
berbasis teknologi fokus bidang animasi dan telematika yang sudah mandiri, dengan omset
400-500 juta rupiah/tahun
yang berkantor di gedung 2 CTP/BITC.

64 UKM, IKM dan Start Up
binaan inkubasi membentuk koperasi yang beranggotakan para pelaku UKM & IKM.

337 kegiatan di CTP
Pelatihan, Pemagangan, inkubasi, workshop, temu bisnis, kunjungan dari industry, daerah dan perguruan tinggi dalam dan luar negeri, promosi, tech festival, dll.

40 siswa magang
di bidang animasi untuk siswa SMK seluruh Indonesia.
DATA & FAKTA GEDUNG BITC

Tenant

5 tenant

Omzet

400-500 juta rupiah/tahun

Tenaga Kerja

37 orang

Kontribusi PAD

150 juta Target 2018

2017

DATA & FAKTA
GEDUNG BITC

VR & VT Umrah & Manasik Haji

3D Virtual Tour & 2D Commercial

Anugerah Pesona Indonesia App.

Pedoman Hidup Prajurit TNI (Kemenhan RI)

KAABA

MIAMI BANGPU

Anugerah Pesona Indonesia

3D Mascots Animation Post and Commercial

unicef

2D Animations & life action short film

3D Virtual Tour & 2D Commercial

Anugerah Pesona Indonesia App.
INTERNATIONAL EVENTS
PROGRAM PEMERINTAH

GERAKAN NASIONAL
1000
STARTUP DIGITAL

PENDANAAN
PERUSAHAAN PEMULA
BERBASIS TEKNOLOGI
TAHUN 2018

BEKRAF for
Pre-Startup
BEKUP 2017
Build Your Digital Startup & Get Backed-Up!

Have a Team & Idea? Register BEKUP-Start Now

BEKUP - Start | Registration
Hanya anak bangsa sendirilah yang dapat diandalkan untuk membangun Indonesia, tidak mungkin kita mengharapkan dari bangsa lain!

— B. J. Habibie, Presiden ke-3 Indonesia

bambang s pujantiyo
Terimakasih